

Classification of triple negative breast cancer (TNBC) by DNA damage immune response (DDIR) signature and homologous recombination deficiency (HRD) status:

Analysis of SWOG S9313 adjuvant trial

Shane R. Stecklein, William Barlow, Lajos Pusztai, Kirsten Timms, Richard Kennedy, Sunil Badve, Yesim Gökmen-Polar, Peggy Porter, Hannah Linden, Debu Tripathy, Gabriel N. Hortobagyi, Andrew K. Godwin, Alastair Thompson, Daniel Hayes, and Priyanka Sharma

Introduction

- Triple negative breast cancer (TNBC) is heterogeneous.
- Systemic chemotherapy is recommended for most patients with early-stage TNBC.
- Chemotherapy response biomarkers:
 - Number of stromal tumor infiltrating lymphocytes (sTILs)^{1,2,5}
 - Homologous recombination deficiency (HRD)^{3,7}
 - Gene expression signatures
 - TNBC molecular subtype⁴
 - Proliferation associated gene expression signatures⁵
 - Immune signatures, including DDIR⁶
 - PD-L1 expression⁸
- The overlap and prognostic interaction between HRD, sTILs, immune signatures, and molecular subtype in early-stage TNBC has not been examined.

¹Denkert et al., Lancet Oncology, 2018; ²Loi et al., JCO, 2019; ³Telli et al., ASCO (2018); ⁴Masuda et al., Clin Cancer Res, 2013; ⁵Stover et al., Clin Cancer Res, 2016; ⁶Sharma et al., JCO, 2019 ⁷Sharma et al., Ann Oncol, 2018; ⁸Schmid, NEJM, 2020

Presented by: Shane Stecklein, MD, PhD

This presentation is the intellectual property of the author/presenter. Contact them at sstecklein@kumc.edu for permission to reprint and/or distribute.

National Cancer Institute pr

Research Program

Trials Network

RESEARCH

NCI

Assessing impact of *BRCA*ness, Immune Markers, and Subtype on outcomes in TNBC Patients Treated with Adjuvant AC on S9313

- DNA Damage Immune Response (DDIR) signature (ALMAC Diagnostic Services)
 - FFPE samples analyzed by Xcel[™] Array
 - 44 gene signature
 - DDIR+ = Score of ≥ 0.3681^{1,2}
- myChoice[®] HRD (Myriad Genetics)
 - Measurement of LOH^{3*}, TAI^{4*}, LST^{5*}
 - Tumor BRCA1/2 mutation
 - HRD⁺ = HRD score of \geq 42⁶ or mutation in *BRCA1* or *BRCA2* detected in tumor
- sTIL quantification
 - Scored blindly by two breast pathologists
- TNBC Subtype⁷ and CIBERSORTx⁸
 - Imputed from bulk tissue microarray gene expression analysis
- gDNA NGS (pending)

¹Sharma et al., *JCO*, 2019; ²Mulligan et al., *JNCI*, 2014; ³Abkevich et al., *Br. J. Cancer*, 2012; ⁴Birbak et al., *Cancer Discov*, 2012; ⁵Popova et al., *Cancer Res*, 2012; ⁶Telli et al., *Clin Cancer Res*, 2016; ⁷Lehmann et al., *J Clin Invest*, 2011; ⁸Newman et al., *Nature Biotech*, 2019 *LOH = Loss of heterozygosity; TAI = Telomeric allelic instability; LST = Large-scale state transitions

This presentation is the intellectual property of the author/presenter. Contact them at sstecklein@kumc.edu for permission to reprint and/or distribute.

Assay	Available (%)
DDIR	381/425 (89.6)
HRD	363/425 (85.4)
sTIL	423/425 (99.5)

All three markers available for 328/425 (77%)

HRD, DDIR, sTIL, and Subtype are Prognostic in TNBC

Presented by: Shane Stecklein, MD, PhD

HRD and tBRCA1/2 Mutation are Associated with Induction of DDIR but not with sTIL Infiltration

*Continuous comparison **Categorical comparison (by threshold)

What is the prognostic utility of dual classification of TNBC by DDIR and HRD status?

Classification by DDIR and HRD Status and Distribution of Molecular Subtypes within DDIR/HRD Classes

Presented by: Shane Stecklein, MD, PhD

Combined DDIR/HRD Classes are Prognostic

DDIR/HRD Class, Immune Cell Infiltration, Imputed Immune Cell Fractions, and ICI Target Expression

PD-1

AВ

December 8-11, 2020

Virtual Symposium San Antonio, TX U.S.A.

0.4

RESEARCH

Presented by: Shane Stecklein, MD, PhD

Gene Expression Signature Cluster Analysis Based on DDIR and HRD Status

Image adapted from The Hallmarks of Cancer. Originally published in Cell 144, Hanahan D & Weinberg RA, Hallmarks of Cancer: The Next Generation, 646-674, © 2011. With permission from Elsevier.

Presented by: Shane Stecklein, MD, PhD

Top Gene Expression Signatures Discriminating DDIR⁺ and DDIR⁻ TNBC

Signature	scores a	enerated l	ov clara [†]	analysis	
Jighatare	JUDICJ P	scheratea i	Jy clara	anarysis	

Hallmark	Signature (Reference)	ture (Reference) Description		
IO	Almac IO Assay [DDIR] (Mulligan et al., 2014)	cGAS-STING pathway	1.34 (<0.001)	
Ю	IFNy Response (Almac Hallmark)		0.97 (<0.001)	
Ю	IFNα Response (Almac Hallmark)		0.93 (<0.001)	÷
Ю	CTLA4 Response Signature (Ji et al., 2011)	IFNy and Th1-associated genes	0.89 (<0.001)	E
Ю	Allograft Rejection (Almac Hallmark)		0.85 (<0.001)	D
Inflammation	NFkB Activity Signature (Hopewell, et al., 2013)	NFkB signaling and immune surveillance	0.81 (<0.001)	L
Inflammation	TCGA CSF1 Response (Beck et al., 2009)	Macrophage CSF-1 response genes	0.79 (<0.001)	С
IO T-cell inflamed GEP (Ayers et al., 2017)		T-cell inflamed IFNy response genes	0.79 (<0.001)	D
IO Immune Response (Prat et al., 2017)		Granzyme-mediated apoptosis	0.75 (<0.001)	
IO Immune Response (Prat et al., 2017)		Cell adhesion and toll-like receptors	0.71 (<0.001)	
Angiogenesis	Global Angiogenesis Signature (Anders et al., 2013)	Correlated aniogenic genes	-0.24 (<0.001)	
Angiogenesis	Angiogenesis (Almac Hallmark)		-0.24 (<0.001)	
Energetics	Metabolic progression signature (Nath et al., 2016)	Lipogenesis and fatty acid metabolism genes	-0.26 (<0.001)	~
Ю	TCGA TGF β Signature (Teschendorff et al., 2010)	TGFβ signaling genes	-0.27 (<0.001)	E
ЕМТ	MCPCounter-Fibroblasts (Becht et al., 2016)	Stromal genes and cell counterparts	-0.28 (<0.001)	D
ЕМТ	MAPK Activity Score (Wagle et al., 2018)	MAPK signaling pathway	-0.28 (<0.001)	C
Cell Death	Autophagy-related Risk Score (An et al., 2018)	Autophagy-related phenotype expression	-0.30 (<0.001)	d D
Energetics	Myogenesis (Almac Hallmark)		-0.38 (<0.001)	D
Inflammation	M1/M2 GE Signature (Yuan et al., 2015)	Classification of M1/M2 macrophages	-0.41 (<0.001)	
Angiogenesis	Almac Angiogenesis Assay (Gourley et al., 2014)	Anti-angiogenic signature	-0.59 (<0.001)	

December 8-11, 2020 Virtual Symposium San Antonio, TX U.S.A.

Research Program

Community Oncolog

Presented by: Shane Stecklein, MD, PhD

Top Gene Expression Signatures Discriminating Class 3 (DDIR⁻/HRD⁺) and Class 4 (DDIR⁻/HRD⁻)

December 8-11, 2020 Virtual Symposium San Antonio, TX U.S.A.

Subtype	DDIR Status	DDIR/HRD Class
Basal-Like 1	Negative	1 DDIR+/HRD+
Basal-Like 2	Positive	2 DDIR+/HRD-
Mesenchymal		3 DDIR-/HRD+
Mesenchýmal Stem-Like	HRD Status	📕 4 DDIR-/HRD-
Luminal Androgen Receptor	No notice	
Unclassified		sTIL Fraction
		0.00 🗖 0.30
		🗆 0.01 📕 0.40
Immunomodulatory Modifier	tBRCA1/2 Mutation	🗖 0.05 📕 0.50
Negative	Negative	0.10 🗖 0.60
Positive	Positive	0.20 0.70

Signature scores generated by clara^T analysis (ALMAC)

Hallmark	Signature (Reference)	Description	Signal-to- Noise Ratio (<i>P</i> value)	
Genome Instab	BRCA1ness Signature (Severson et al., 2017)	DNA replication, recombination & repair	0.54 (<0.001)	
Cell Death	TP53 Classifier (Knijenburg et al., 2018)	TP53 target genes and deficiency	0.45 (<0.001)	3
Angiogenesis	Vascular Proliferation (Stefansson et al., 2015)	Microvessel proliferative signaling	0.31 (0.004)	SS
Proliferation	pSTAT3-GS Score (Sonnenblick et al., 2015)	Constitutive activation of STAT3	0.27 (0.007)	ia
Genome Instab	DDR Pathway Focused Score (Kang et al., 2012)	Platinum-induced DNA damage repair	0.27 (0.008)	0
ю	TGFβ Signaling (Almac Hallmark)		0.25 (0.015)	⊒.
ЕМТ	Notch Signaling (Almac Hallmark)		0.25 (0.011)	d
ю	TGFβ Response Signature (Mariathasan et al., 2018)	TGFβ signaling genes	0.25 (0.011)	
Ev Grow Supp	E2F Target Expression Classifier (Lan et al., 2018)	E2F highly and lowly dependent genes	0.25 (0.009)	
Genome Instab	Mitotic Spindle (Almac Hallmark)		0.24 (0.021)	
Inflammation	M1/M2 GE Signature (Yuan et al., 2015)	Classification of M1/M2 macrophages	-0.18 (0.168)	
ЕМТ	EMT Signature Estimate (Tan et al., 2014)		-0.20 (0.041)	
ЕМТ	MCPCounter-Neutrophils (Becht et al., 2016)	Stromal genes and cell counterparts	-0.20 (0.039)	4
ЕМТ	EMT Signature (Byers et al., 2013)	EGFR and PI3K/AKT response genes	-0.21 (0.047)	SS
Immortality	Candidate Senescence Signature (Wu et al., 2019)	Regulators of p21-induced senescence	-0.21 (0.019)	ia
ЕМТ	MCPCounter-B-lineage (Becht et al., 2016)	Stromal genes and cell counterparts	-0.22 (0.044)	0
ю	TILs Mast Cells (Danaher et al., 2017)	Immune cell populations	-0.25 (0.012)	<u> </u>
Genome Instab	DNA Damage Sensitivity (McGrail et al., 2017)	PARPi responsive and sensitive genes	-0.27 (0.009)	d
Energetics	Xenobiotic Metabolism (Almac Hallmark)		-0.27 (0.008)	
Energetics	Bile Acid Metabolism (Almac Hallmark)		-0.29 (0.005)	

Presented by: Shane Stecklein, MD, PhD

This presentation is the intellectual property of the author/presenter. Contact them at sstecklein@kumc.edu for permission to reprint and/or distribute

Research Program

Therapeutic Targets within DDIR-/HRD- TNBC Hallmarks

EMT	Immortality	IO	Genome Instability	Energetics		
AXL	TERT	CTLA4	BRCA1	TXNIP		
FAK1	RB1	PDL1	BRCA2	GLUT1		
NOTCH1	p21	PD1	ERCC1	MYC	/	α1
EGFR	p16	LAG3	ATR	IDH1		α2
BRAF	TP53	TIM3	ATM	FASN	/	β1
KRAS	Ki67	OX40	PARP1	AMPK		β2
MET	MDM2	ICOS	WEE1	HIF1A		γ1
TGFB1	E2F1	CD27	CHK1	mTOR		γ2
FGFR1	TERF1	CD40	CHK2	PRDX1	\	γ3
FGFR2	POT1	IDO1	DNAPK	SOD1		

Upregulated Downregulated

in DDIR-/HRD- compared to DDIR-/HRD+

Targets by hallmark in clara^T analysis (ALMAC)

Dysregulation of AMPK β/γ Regulatory Subunits in DDIR⁻/HRD⁻ TNBC

Herzig and Shaw., Nat Rev Mol Cell Biol, 2017

Conclusions

- Immune activation and DNA repair deficiency have incomplete overlap in TNBC
- Classification of TNBC by DDIR and HRD status identifies biology-driven prognostic categories in patients treated with adjuvant AC
- Immunologic and DNA repair-mediated therapeutic vulnerabilities may be independent
 - Both contribute to favorable outcomes noted in Class I (DDIR+/HRD+)
- Immunologically "cold" Class 3 (DDIR-/HRD+) does not have poor outcome
 - Rescued by sensitivity to DNA damaging chemotherapy
- Unfavorable Class 4 (DDIR-/HRD-) TNBC may have metabolic vulnerabilities associated with dysregulation of AMPK-mediated energy sensing
- These findings should be validated in other cohorts of patients treated with contemporary chemotherapy regimens
 - Adjuvant treatment on S9313 did not include a taxane

Conclusions

• Classification of TNBC by DDIR and HRD has potential therapeutic implications:

		Features			
DDIR/HRD Category	Prognosis	sTIL Infiltration Immune Activation ICI Target Expression	<i>BRCA</i> ness & DNA Repair Deficiency	Therapeutic Opportunities	
DDIR+/HRD+	Favorable	\checkmark	\checkmark	(?) De-intensified chemotherapy Immunotherapy DNA damaging agents	
DDIR+/HRD-	Favorable Intermediate	\checkmark	X	Immunotherapy Strategies to induce DNA repair deficiency (?) Intensified chemotherapy (ADC)	
DDIR ⁻ /HRD+	Favorable Intermediate	X	\checkmark	DNA damaging agents and PARPi Strategies to induce anti-tumor immunity	
DDIR ⁻ /HRD ⁻	Unfavorable	X	X	Novel agents Strategies to induce anti-tumor immunity	

Acknowledgements

- Patients and their families
- Participating sites
 - Physicians, nurses, and research coordinators
- Advocate community

Funding: NCI/NCTN grants U10CA180888 and U10CA180819, and in part by Amgen

