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Abstract
The pharmaceutical sector is increasingly employing sustain-
able strategies to combat its environmental impact through the
implementation of green chemistry and engineering practices.
As regulatory requirements become more stringent and the
drive towards sustainable chemical manufacture continues,
new process methods and technologies are rapidly being
developed with continuous flow at the forefront. This review
highlights recent publications where continuous flow was
adopted as a driver for sustainability with green metrics
discussed.
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Introduction
Continuous flow has historically dominated in the
petrochemical and commodity industry driven by the
high volumes of material required. Over the last decade,
it has expanded into the pharmaceutical realm as a
green, enabling technology, being named one of
IUPAC’s top 10 chemical innovations that could change
the world [1]. The efficient mass and heat transfer,
broader process windows, and precise reaction control

offered by continuous flow facilitate reduced reaction
times, together with improved yields, selectivity, safety,
and scalability. Many of these attributes align with the
12 principles of Green Chemistry as coined by Warner
and Anastas [2].
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The 12 principles act as a guideline for developing and
enhancing the sustainability of a chemical process and
should be used in tandem with green metrics to quan-
tifiably assess the environmental impact of the process.
These green metrics include the E-factor, process mass
intensity (PMI), and atom economy [3,4]. An in-depth
analysis of the lineage between the advantages associ-
ated with continuous flow and the 12 principles has
been documented previously and therefore will not be
discussed here [5e9].

Numerous regulatory bodies champion the imple-
mentation of continuous-flow manufacturing within the
pharmaceutical industry to improve product quality,
consistency, and sustainability [10]. Consequently,
adaption of manufacturing processes to continuous flow
is on the rise. Despite this, there are still significant
hurdles associated with its uptake, including aggressive
timelines often experienced within the pharmaceutical
industry, the need for operator training, support of reg-
ulatory bodies for current Good Manufacturing Practice
(cGMP) documentation, and access to equipment

within suitable timelines.

This brief perspective will provide a review of some of
the most recent innovations in sustainable continuous
flow processes. The following sections highlight the
myriad of process advantages realized through the
implementation of continuous flow for reaction
screening, optimization, and manufacture, and its asso-
ciated environmental benefits.
Sustainable continuous chemical synthesis
The drive towards sustainable manufacture through the
development of photochemical processes has greatly
benefited from the parallel developments in continuous
flow microreactor technology. With light already
considered a clean, traceless reagent, small-scale reactor
designs further enhance its benefits by providing supe-
rior mass transport kinetics to maximize chemo-
selectivity when compared to traditional batch reactors
[11e15]. The utility of continuous flow photochemistry
was exemplified in the commercial manufacturing pro-

cess of Belzutifan (MK-6482), where a key trans-
formation featuring a radical bromination flourished
under microfluidic flow conditions (Scheme 1a) [16].
Beyond reducing side-product formation, telescoping
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Scheme 1
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Continuous flow-enabled synthesis of a) Belzutifan [13], b) Sulfone 1 [21], c) RG7774 [23–25], and d) HYDAMTIQ$HCl [26].

2 Flow Chemistry (2024)
the bromination step into a subsequent oxidation reac-
tion overcame challenges associated with isolation of the

brominated intermediate and reduced the process’
auxiliary waste. Scalability was demonstrated through
the implementation of a numbering up strategy, where a
cGMP-qualified flow reactor was developed achieving
>100 kg/day output.

Synthetic electrochemistry provides analogous benefits
to photochemistry, with redox chemistry realized
without the use of stoichiometric hazardous reducing
and/or oxidizing agents [17e19]. Microfluidic flow
Current Opinion in Green and Sustainable Chemistry 2024, 46:100886
reactors again promote enhanced mass transfer between
the electrodes providing more energy-efficient trans-

formations, whilst simultaneously providing a more
uniform current distribution [20e22]. Electrochemistry
comes with its fair share of unique scalability challenges
for a flow system. Electrode choices are limited, not only
by reaction performance but also through availability,
cost, and durability considerations. Furthermore,
hydrogen, a common by-product of electrochemical re-
actions, can become trapped within the cell reducing
the effective reactor volume and raising safety concerns
[23].
www.sciencedirect.com
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Sustainable continuous flow review Nolan et al. 3
In 2022, Merck reported the development of a contin-
uous flow electrochemical oxidation for the trans-
formation of a thioether to a sulfone on kilo-scale
(Scheme 1b) [24]. Initial investigations were conducted
in batch mode on the milligram scale identifying suit-
able electrolyte, Et4NPF6, and electrode, RuO2 on Ti.
An excellent yield of the desired sulfone and Faradaic
efficiency (5 F/mol of charge) were observed on

employing these reactants. The combined use of online
flow 1H NMR, cyclic voltammetry, density functional
theory (DFT), and ion chromatography delivered crit-
ical insights into the reaction mechanism and competing
pathways, providing guidance for reaction scalability.
Further developments were conducted under contin-
uous flow operation with key parameters identified as
the total charge, current density, and linear velocity. The
electrochemical oxidation was conducted in a contin-
uous recirculatory mode to ensure efficient mixing and
removal of H2, allowing high flow rates to be employed.

The oxidation was successfully scaled using parallel
plate reactors offering a productivity of 1 kg within a
24 h period. This work provides a useful guide for the
development and scale-up of electrochemical reactions.

One key advantage of continuous flow is realized
through its utilization in scaling hazardous chemistries
[25]. Highly energetic, toxic, or explosive reagents are
regularly employed under continuous flow mode owing
to its small reactor dimensions and the precise reaction
control offered. In 2021, Kappe and co-workers devel-

oped the flow-assisted synthesis of RG7774, a cannabi-
noid receptor type 2 agonist (Scheme 1c) [26e28]. The
previous synthetic strategy relied on an 8-step synthesis
with a low overall yield of 27% due to the poor regio-
selectivity observed in the final alkylation step.
Continuous flow enabled alkylation to be conducted at
the start of the process through the incorporation of
hazardous azide transformations averting downstream
regioselectivity issues. The process productivity was
also enhanced during the [3 þ 2] cycloaddition reaction
through a combination of plug flow reactors and
continuous stirred tank reactors to circumvent the sol-

ubility limitations of the product. Furthermore,
employing continuous flow for the cyclization reaction
enabled a temperature of up to 200 �C to be deployed
which was significantly higher than the solvent boiling
point. Through a combination of intensified batch and
flow protocols, a scalable synthesis of receptor RG7774
was successfully developed with an overall yield of 53%.

Gioiello and co-workers reported the multi-step
continuous synthesis of 2-((Dimethylamino)methyl)-9-
hydroxythieno[2,3-c]isoquinolin-5(4H)-one (HYDAM-

TIQ), a Poly(ADP-ribose)polymerase-1/2 (PARP-1/2)
inhibitor [29]. The prior synthetic route offered a low
overall yield (23%), employing hazardous reagents, and
requiring tedious purification processes [30]. Adoption of
a continuous flow approach enabled a five-step synthesis
www.sciencedirect.com C
to be conducted sequentially, along with inline purifica-
tion techniques such as a liquid/liquid (l/l) separator and
a silica-packed column affording the final product
HYDAMTIQ$HCl in an overall yield of 55%, with >97%
purity on multigram scale (Scheme 1d). A detailed
assessment of the key green metrics, the process cost,
and productivity revealed the significant benefits of the
flow process over the prior batch approach, with a 10-fold

increase in the reaction mass efficiency observed and the
mass recovery parameter was improved by 200%.

Automated flow for reaction screening and
optimization
Quality by Design (QbD) is a strategic method
emphasized by the FDA to ensure the delivery of
high-quality products [31]. This is achieved using risk
assessments, experimental methods such as design of
experiment (DoE), process analytical technology
(PAT), and the automation of chemical processes. In
recent years, continuous flow technology has matured
into the field of automated chemical synthesis
enabling sets of experiments to be conducted without

human intervention thus greatly reducing optimiza-
tion timelines, experimental error, and costs, whilst
relieving chemists of labor-intensive tasks. Addition-
ally, incorporation of PAT, and predictive computa-
tional methods can expedite reaction development
and optimization whilst simultaneously improving
product quality, process safety, and promoting sus-
tainable manufacturing.

Self-optimizing flow reactors
The precise reaction control achieved using a flow
reactor makes it well suited to statistical and algorithm-
based optimization. Combined with real-time feedback
presented by PAT, the use of continuous flow platforms
in tandem with statistical modeling software enables

autonomous self-optimization, whereby a feedback loop
is created, dictating iterative experimental design based
on the data generated from the current and previous
experiments. Collectively, such automated self-
optimization platforms offer access to more rapid, cost-
effective, and sustainable reaction development by
minimizing the number of experiments and materials
required during the optimization campaign. This
continuous self-optimization approach has found suc-
cessful application to an array of chemical trans-
formations, including ultra-fast organolithium,

photochemical and electrochemical transformations
[32e34].

Complex, multi-step synthetic sequences are typically
facilitated by continuous flow through telescoping each
step into a singular, uninterrupted reaction network.
Flow offers potential to minimize process downtime by
avoiding laborious workup, purification, and cleaning
procedures typically encountered in batch-type chem-
istry and minimizes waste generation, thereby
urrent Opinion in Green and Sustainable Chemistry 2024, 46:100886
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maximizing the associated E-factor [35]. As target
molecules become more complex, development and
optimization of telescoped pathways become chal-
lenging with key process input variables affecting the
inherent chemistry, and limitations imposed by the
physical and chemical interdependency between unit
steps. The use of self-optimization can be employed to
study the effects of multiple reaction parameters at

once, with current developments enabling up to five
independent reaction variables to be studied simulta-
neously [36].

Self-optimization of telescopic multistep sequences
initially saw PAT positioned at the end of the entire
sequence, with no discrimination between the influence
of each individual unit step [37]. More rigorous under-
standing of each chemical step has since been achieved
by the incorporation of multiple PAT tools along the
telescoped flow path to facilitate multi-dimensional,
Scheme 2

Self-optimization of a telescoped reaction through multipoint analysis using a
single HPLC unit for multipoint sampling [37].

Current Opinion in Green and Sustainable Chemistry 2024, 46:100886
data-rich experimentation [33, 38]. In 2022, a report
from Kappe and co-workers screening a total of seven
variables between two steps to optimize the synthesis of
Edaravane in flow achieved>95% yield with 5.42 kg L�1

h�1 space-time yield following 85 iterative optimiza-
tions, with both IR and NMR spectroscopies used as
viable PATs (Scheme 2a) [39]. The use of multiple
analytical techniques per optimization campaign is an

expensive endeavor, with a large up-front cost typically
associated with the purchase of high-end analytical in-
struments. In this regard, Bourne and co-workers
developed a continuous flow multi-step self-optimiza-
tion platform using a bespoke multi-point sampling
method, using only one analytical HPLC device, allow-
ing samples to be extracted at the end of each reactor
(Scheme 2b) [40]. A Bayesian optimization algorithm
was employed alongside an Adaptive Expected
Improvement to provide a balance between the explo-
ration of chemical spaces and exploitation of
Current Opinion in Green and Sustainable Chemistry

) in-line spectroscopic analysis at the end of each reactor unit [36], b) a

www.sciencedirect.com

www.sciencedirect.com/science/journal/24522236


Sustainable continuous flow review Nolan et al. 5
information. The reaction’s global optimum was realized
after only 13 experiments and 14 h, delivering the
desired aryl ketone in an 81% overall yield. The use of a
multipoint sampling approach proved to be key in un-
derstanding the individual reaction steps and provided
mechanistic insights into the most favorable competing
pathway.

High-throughput experimentation in flow
One methodology that has sustained interest within the
pharmaceutical industry to accelerate reaction process

development and optimization is high throughput
experimentation (HTE) [41]. HTE traditionally uses
multi-well plates to minimize material consumption at
the screening stage while facilitating the parallelization
of experiments, which allows multiple chemical input
parameters to be screened simultaneously in a rapid and
inexpensive way (Scheme 3a). HTE is typically
performed in batch, but in 2018 Sach and co-workers at
Pfizer reported an innovative, automated platform to
conduct HTE inflow [42]. After validating their design,
the authors applied their flow-based HTE platform to a

palladium-catalyzed SuzukieMiyaura cross-coupling,
executing 5760 experiments on the nanomolar scale,
with a throughput of w1500 experiments per 24-h
period. In 2022, the authors revised their platform for
application in photoredox catalysis, with the optimiza-
tion of a Minisci-type reaction providing access to
complex bicyclic motifs [43]. Conducting 475 reactions
in less than 12 h, the developed system was subse-
quently applied to over 50 unique substrates, with
multiple heterocyclic and bicyclic ester motifs proving
suitable. To further demonstrate the generality of this

system, 31 substrate pairs were examined in a parallel
medicinal chemistry format, achieving a 55% success
Scheme 3

Simplified depiction of a high throughput flow reactor anatomy. a) Use of a co
nanomole scale [38], b) the use of a segmented flow reactor for high through

www.sciencedirect.com C
rate of the library. Rapid reaction screening under
continuous flow operation not only reduces chemical
waste but also minimizes exposure to hazardous chem-
icals and enhances overall safety. Since the development
of this continuous high throughput experimentation
platform, there have been a limited number of contri-
butions to the field [44]. Of note was a recent devel-
opment detailing a flow-enabled approach to kinetic

experimentation. The autonomous segmented flow
platform could generate 216 unique kinetic profiles in
just 90 h representing a 40-fold increase in experimental
throughput and simultaneous reduction in material
consumption when compared to the same chemistry in
batch (Scheme 3b) [45].

The Covid-19 pandemic highlighted some of the major
challenges within the pharmaceutical sector, not limited
to those associated with lengthy drug development
timelines but also with labor shortages. Consequently,

automated manufacturing became a pivotal goal within
the pharmaceutical industry to enable faster drug
development with lowered operator demands.

Summary and outlook
Continuous flow plays a pivotal role in the development
of green technologies and processes. The inherent

benefits associated with continuous flow, namely the
precise reaction control and small reactor dimensions,
assist in minimizing waste generation, exposure of haz-
ardous chemicals to operators, energy requirements, and
overall process costs. Continuous flow is regularly
employed to aid in the chemical synthesis of complex
molecules and has recently found significant application
in the field of automated reaction screening, develop-
ment, and optimization. With strict regulatory
Current Opinion in Green and Sustainable Chemistry

ntinuous flow reactor for high throughput reaction screening on the
put kinetic analysis [42].
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requirements being constantly revised, the pharma-
ceutical industry must adapt and focus its attention on
the implementation of new, innovative technologies
such as continuous flow.
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